Rationality of homogeneous varieties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Tangential Varieties of Rational Homogeneous Varieties

We determine which tangential varieties of homogeneously embedded rational homogeneous varieties are spherical. We determine the homogeneous coordinate rings and rings of covariants of the tangential varieties of homogenously embedded compact Hermitian symmetric spaces (CHSS). We give bounds on the degrees of generators of the ideals of tangential varieties of CHSS and obtain more explicit info...

متن کامل

Homogeneous Toric Varieties

A description of transitive actions of a semisimple algebraic group G on toric varieties is obtained. Every toric variety admitting such an action lies between a product of punctured affine spaces and a product of projective spaces. The result is based on the Cox realization of a toric variety as a quotient space of an open subset of a vector space V by a quasitorus action and on investigation ...

متن کامل

Log Homogeneous Varieties

Given a complete nonsingular algebraic variety X and a divisor D with normal crossings, we say that X is log homogeneous with boundary D if the logarithmic tangent bundle TX(− log D) is generated by its global sections. Then the Albanese morphism α turns out to be a fibration with fibers being spherical (in particular, rational) varieties. It follows that all irreducible components of D are non...

متن کامل

Motives of projective homogeneous varieties

Theorem. Das Krull-Schmidt Theorem gilt nicht in der Kategorie der Chow Motive M(PGL 1 (A), Z), wobei A eine zentral einfache Algebra vom Grad 5 ist.

متن کامل

Homogeneous Cyclotomic Polynomials and Rationality of Curves

Let k be a field of arbitrary characteristic. Suppose that f1, . . . , fn are polynomials in k[t] and di = deg(fi). We prove that, if gcd of d1, . . . , dn is 1, then k(f1, . . . , fn) = f(t), or equivalently, the morphism ψ = (f1, . . . , fn) : Ak → A n k is proper and birational onto its image. By combining this result with the epimorphism theorem of Abhyankar and Moh, we prove that, if f and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2016

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/6728